
Chapter 3

Single-Player Monte-Carlo
Tree Search

This chapter is an updated and abridged version of the following publications:

1. Schadd, M.P.D., Winands, M.H.M., Herik, Chaslot, G.M.J-B., H.J. van
den, and Uiterwijk, J.W.H.M. (2008a). Single-Player Monte-Carlo Tree
Search. Proceedings of the 20st BeNeLux Conference on Artificial Intel-
ligence (BNAIC’08) (eds. A. Nijholt, M. Pantic, M. Poel, and H. Hon-
dorp), pp. 361–362, University of Twente, Enschede, The Netherlands.

2. Schadd, M.P.D., Winands, M.H.M., Herik, H.J. van den, and Aldewereld,
H. (2008b). Addressing NP-Complete Puzzles with Monte-Carlo Methods.
Proceedings of the AISB 2008 Symposium on Logic and the Simulation of
Interaction and Reasoning, Vol. 9, pp. 55–61, The Society for the Study
of Artificial Intelligence and Simulation of Behaviour, Brighton, United
Kingdom.

3. Schadd, M.P.D., Winands, M.H.M., Herik, H.J. van den, Chaslot, G.M.J-B.
and Uiterwijk, J.W.H.M. (2008c). Single-Player Monte-Carlo Tree Search.
Computers and Games (CG 2008) (eds. H.J. van den Herik, X. Xu, Z.
Ma, and M.H.M. Winands), Vol. 5131 of Lecture Notes in Computer
Science (LNCS), pp. 1–12, Springer-Verlag, Berlin, Germany.

The traditional approaches to deterministic one-player games with perfect infor-
mation (Kendall, Parkes, and Spoerer, 2008) are applying A* (Hart et al., 1968)
or IDA* (Korf, 1985). These methods have been quite successful for solving this
type of games. The disadvantage of the methods is that they require an admissible
heuristic evaluation function. The construction of such a function can be difficult.
Since Monte-Carlo Tree Search (MCTS) does not require an admissible heuristic, it
may be an interesting alternative. Because of its success in two-player games (cf.
Lee, Müller, and Teytaud, 2010) and multi-player games (Sturtevant, 2008a), this
chapter investigates the application of MCTS in deterministic one-player games with
perfect information.



26 Single-Player Monte-Carlo Tree Search

So far, MCTS has not been widely applied in one-player games. One example is
the Sailing Domain (Kocsis and Szepesvári, 2006), which is a non-deterministic game
with perfect information. MCTS has also been used for optimization and planning
problems which can be represented as deterministic one-player games. Chaslot et al.
(2006a) applied MCTS in production management problems. Mesmay et al. (2009)
proposed the MCTS variant TAG for optimizing libraries for different platforms.
Schadd et al. (2008c) showed that MCTS was able to achieve high scores in the
puzzle1 SameGame.

This chapter answers the first research question by proposing an MCTS method
for a one-player game, called Single-Player Monte-Carlo Tree Search (SP-MCTS).
MCTS for two-player games, as described in Section 2.7, forms the starting point for
this search method. We adapted MCTS by two modifications resulting in SP-MCTS.
The modifications are (1) in the selection strategy and (2) in the backpropagation
strategy. SP-MCTS is tested in the game of SameGame, because there exists no
reliable admissible heuristic evaluation function for this game.

The article is organized as follows. In Section 3.1 we present the rules, complexity
and related work of SameGame. In Section 3.2 we discuss why the classic approaches
A* and IDA* are not suitable for SameGame. Then, we introduce the SP-MCTS
approach in Section 3.3. Section 3.4 describes the Cross-Entropy Method which is
used for tuning the SP-MCTS parameters. Experiments and results are given in
Section 3.5. Section 3.6 gives the chapter conclusions and indicates future research.

3.1 SameGame

SameGame is a puzzle invented by Kuniaki Moribe under the name Chain Shot! in
1985. It was distributed for Fujitsu FM-8/7 series in a monthly personal computer
magazine called Gekkan ASCII (Moribe, 1985). The puzzle was afterwards re-
created by Eiji Fukumoto under the name of SameGame in 1992.

In this section, we first explain the rules in Subsection 3.1.1. Subsequently, we
give an analysis of the complexity of SameGame in Subsection 3.1.2. Finally, we
present related work in Subsection 3.1.3.

3.1.1 Rules

SameGame is played on a vertically oriented 15×15 board initially filled with blocks
of 5 colors at random. A move consists of removing a group of (at least two)
orthogonally adjacent blocks of the same color. The blocks on top of the removed
group fall down. As soon as an empty column occurs, the columns to the right of the
empty column are shifted to the left. Therefore, it is impossible to create separate
subgames. For each removed group points are rewarded. The number of points is
dependent on the number of blocks removed and can be computed by the formula
(n− 2)

2
, where n is the size of the removed group.

1From now on, we call one-player deterministic games with perfect information for the sake of
brevity puzzles (Kendall et al., 2008).



3.1 — SameGame 27

D

C

B

A

C

C

CA

A B

BD

BB

B

CC

CC

C

D

D A

B1

2

3

4

5

A B C D E

(a) Playing “B” in the center
column.

D

C

B

A

C

C

CA

A B

BDCC

CC

C

D

D

A

B1

2

3

4

5

A B C D E

(b) Playing “C” in the center
column.

D

C

B

A

C

CA

A B

BDD

D

A

B

1

2

3

4

5

A B C D E

(c) Resulting position.

Figure 3.1: Example SameGame moves.

We show two example moves in Figure 3.1. When the “B” group in the third
column with a connection to the second column of position 3.1(a) is played, the “B”
group is removed from the game. In the second column the “CA” blocks fall down
and in the third column the “C” block falls down, resulting in position 3.1(b). Due
to this move, it is now possible to remove a large group of “C” blocks (n = 6). Owing
to an empty column the two columns at the right side of the board are shifted to
the left, resulting in position 3.1(c).2 The first move is worth 1 point; the second
move is worth 16 points.

The game is over if no more blocks can be removed. This happens when either
the player (1) has removed all blocks or (2) is left with a position where no adjacent
blocks have the same color. In the first case, 1,000 bonus points are rewarded. In
the second case, points are deducted. The formula for deducting is similar to the
formula for awarding points but now iteratively applied for each color left on the
board. Here it is assumed that all blocks of the same color are connected.

There are variations that differ in board size and the number of colors, but
the 15×15 variant with 5 colors is the accepted standard. If a variant differs in
the scoring function, it is named differently (e.g., Clickomania or Jawbreaker, cf.
Biedl et al., 2002; Julien, 2008).

3.1.2 Complexity of SameGame

The complexity of a game indicates a measure of difficulty for solving the game. Two
important measures for the complexity of a game are the game-tree complexity and
the state-space complexity (Allis, 1994). The game-tree complexity is an estimation
of the number of leaf nodes that the complete search tree would contain to solve the
initial position. The state-space complexity indicates the total number of possible
states.

For SameGame these complexities are as follows. The game-tree complexity

2Shifting the columns at the left side to the right would not have made a difference in number
of points. For consistency, we always shift columns to the left.



28 Single-Player Monte-Carlo Tree Search

can be approximated by simulation. By randomly playing 106 puzzles, the average
length of the game was estimated to be 64.4 moves and the average branching factor
to be 20.7, resulting in a game-tree complexity of 1085. The state-space complex-
ity is computed rather straightforwardly. It is possible to calculate the number of
combinations for one column by C =

∑r
n=0 c

n where r is the height of the column
and c is the number of colors. To compute the state-space complexity we take Ck

where k is the number of columns. For SameGame there exist 10159 states. This is
an over-estimation because a small percentage of the positions are symmetrical.

Furthermore, the difficulty of a game can be described by deciding to which com-
plexity class it belongs (Johnson, 1990). The similar game Clickomania was proven
to be NP-complete by Biedl et al. (2002). However, the complexity of SameGame
could be different. The more points are rewarded for removing large groups, the
more the characteristics of the game may differ from Clickomania. In Clickomania
the only goal is to remove as many blocks as possible, whereas in SameGame points
are rewarded for removing large groups as well.

Theorem. SameGame is at least as difficult as Clickomania.

Proof. A solution S of a SameGame problem is defined as a path from the initial
position to a terminal position. Either S (1) has removed all blocks from the game
or (2) has finished with blocks remaining on the board. In both cases a search has
to be performed to investigate whether a solution exists that improves the score and
clears the board.

Clickomania is a variant of SameGame where no points are rewarded and the only
objective is to clear the board. Finding only one solution to this problem is easier
than finding the highest-scoring solution (as in SameGame). Therefore, SameGame
is at least as difficult as Clickomania.

3.1.3 Related Work

For the game of SameGame some research has been performed. The contributions are
benchmarked on a standardized test set of 20 positions.3 The first SameGame pro-
gram has been written by Billings (2007). This program applies a non-documented
method called Depth-Budgeted Search (DBS). When the search reaches a depth
where its budget has been spent, a greedy simulation is performed. On the test
set his program achieved a total score of 72,816 points with 2 to 3 hours comput-
ing time per position. Schadd et al. (2008c) set a new high score of 73,998 points
by using Single-Player Monte-Carlo Tree Search (SP-MCTS). This chapter will de-
scribe SP-MCTS in detail. Takes and Kosters (2009) proposed Monte Carlo with
Roulette-Wheel Selection (MC-RWS). It is a simulation strategy that tries to max-
imize the size of one group of a certain color and at the same time tries to create
larger groups of another color. On the test set their program achieved a total score
of 76,764 points with a time limit of 2 hours. In the same year Cazenave (2009)
applied Nested Monte-Carlo Search which led to an even higher score of 77,934.
Until the year 2010, the top score on this set was 84,414 points, held by the program

3The positions can be found at: www.js-games.de/eng/games/samegame.



3.2 — A* and IDA* 29

spurious ai.4 This program applies a method called Simple Breadth Search (SBS),
which uses beam search, multiple processors and a large amount of memory (cf.
Takes and Kosters, 2009). Further details about this program are not known. Later
in 2010 this record was claimed to be broken with 84,718 points by using a method
called Heuristically Guided Swarm Tree Search (HGSTS) (Edelkamp et al., 2010),
which is a parallelized version of MCTS.

3.2 A* and IDA*

The classic approach to puzzles involves methods such as A* (Hart et al., 1968) and
IDA* (Korf, 1985). A* is a best-first search where all nodes have to be stored in a
list. The list is sorted by an admissible evaluation function. At each iteration the
first element is removed from the list and its children are added to the sorted list.
This process is continued until the goal state arrives at the start of the list.

IDA* is an iterative deepening variant of A* search. It uses a depth-first approach
in such a way that there is no need to store the complete tree in memory. The search
continues depth-first until the cost of arriving at a leaf node and the value of the
evaluation function exceeds a certain threshold. When the search returns without a
result, the threshold is increased.

Both methods are strongly dependent on the quality of the evaluation function.
Even if the function is an admissible under-estimator, it still has to give an accurate
estimation. Classic puzzles where this approach works well are the Eight Puzzle with
its larger relatives (Korf, 1985; Sadikov and Bratko, 2007) and Sokoban (Junghanns,
1999). Here a good under-estimator is the well-known Manhattan Distance. The
main task in this field of research is to improve the evaluation function, e.g., with
pattern databases (Culberson and Schaeffer, 1998; Felner et al., 2005).

These classic methods fail for SameGame because it is not straightforward to
make an admissible function that still gives an accurate estimation. An attempt to
make such an evaluation function is by just awarding points to the current groups
on the board. This resembles the score of a game where all groups are removed in a
top-down manner. However, if an optimal solution to a SameGame problem has to
be found, we may argue that an “over-estimator” of the position is required, because
in SameGame the score has to be maximized, whereas in common applications costs
have to be minimized (e.g., shortest path to a goal). An admissible “over-estimator”
can be created by assuming that all blocks of the same color are connected and
would be able to be removed at once. This function can be improved by checking
whether there is a color with only one block remaining on the board. If this is the
case, the 1,000 bonus points for clearing the board may be deducted because the
board cannot be cleared completely. However, such an evaluation function is far
from the real score for a position and does not give good results with A* and IDA*.
Our tests have shown that using A* and IDA* with the proposed “over-estimator”
results in a kind of breadth-first search. The problem is that after expanding a node,
the heuristic value of a child can be significantly lower than the value of its parent,
unless a move removes all blocks with one color from the board. We expect that

4The exact date when the scores were uploaded to http://www.js-games.de/ is unknown.



30 Single-Player Monte-Carlo Tree Search

other Depth-First Branch-and-Bound methods (Vempaty, Kumar, and Korf, 1991)
suffer from the same problem. Since no good evaluation function has been found
yet, SameGame presents a new challenge for puzzle research.

3.3 Single-Player Monte-Carlo Tree Search

Based on MCTS, we propose an adapted version for puzzles: Single-Player Monte-
Carlo Tree Search (SP-MCTS). We discuss the four steps (selection, play-out, ex-
pansion and backpropagation) and point out differences between SP-MCTS and
MCTS in Subsections 3.3.1-3.3.4. SameGame serves as example domain to explain
SP-MCTS. The final move selection is described in Subsection 3.3.5. Subsection
3.3.6 describes how randomized restarts may improve the score.

3.3.1 Selection Step

Selection is the strategic task to select one of the children of a given node. It controls
the balance between exploitation and exploration. Exploitation is the task to focus
on the moves that led to the best results so far. Exploration deals with the less
promising moves that still may have to be explored, due to the uncertainty of their
evaluation so far. In MCTS at each node starting from the root, a child has to be
selected until a position is reached that is not part of the tree yet. Several strategies
have been designed for this task (Chaslot et al., 2006b; Kocsis and Szepesvári, 2006;
Coulom, 2007a).

Kocsis and Szepesvári (2006) proposed the selection strategy UCT (Upper Con-
fidence bounds applied to Trees). For SP-MCTS, we use a modified UCT version.
At the selection of node p with children i, the strategy chooses the move, which
maximizes the following formula.

vi + C ×
√

lnnp
ni

+

√∑
r2 − ni × v2i +D

ni
(3.1)

The first two terms constitute the original UCT formula. It uses ni as the number
of times that node i was visited where i denotes a child and p the parent to give
an upper confidence bound for the average game value vi. For puzzles, we added a
third term, which represents a possible deviation of the child node (Chaslot et al.,
2006a; Coulom, 2007a). It contains the sum of the squared results so far

(∑
r2
)

achieved in the child node corrected by the expected results ni×v2i . A high constant
D is added to ensure that nodes, which have been rarely explored, are considered
uncertain. Below we describe two differences between puzzles and two-player games,
which may affect the selection strategy.

First, the essential difference between puzzles and two-player games is the range
of values. In two-player games, the outcome of a game is usually denoted by loss,
draw, or win, i.e., {−1, 0, 1}. The average score of a node always stays within [−1, 1].
In a puzzle, an arbitrary score can be achieved that is not by definition within a
preset interval. For example, in SameGame there are positions, which result in a



3.3 — Single-Player Monte-Carlo Tree Search 31

value above 5,000 points. As a first solution to this issue we may set the constants
C and D in such a way that they are feasible for a certain interval (e.g., [0, 6000]
in SameGame). A second solution would be to scale the values back into the above
mentioned interval [−1, 1], given a maximum score (e.g., 6,000 for a SameGame
position). When the exact maximum score is not known a theoretical upper bound
can be used. For instance, in SameGame a theoretical upper bound is to assume
that all blocks have the same color. A direct consequence of such an upper bound
is that due to the high upper bound, the game scores are located near to zero. It
means that the constants C and D have to be set with completely different values
compared to two-player games. We have opted for the first solution in our program.

A second difference is that puzzles do not have any uncertainty on the opponent’s
play. It means that the line of play has to be optimized without the hindrance of an
opponent (Chaslot, 2010). Due to this, not only the average score but the top score
of a move can be used as well. Based on manual tuning, we add the top score using
a weight W with a value of 0.02 to the average score.

Here we remark that we follow Coulom (2007a) in choosing a move according to
the selection strategy only if np reaches a certain threshold T (we set T to 10). As
long as the threshold is not exceeded, the simulation strategy is used. The latter is
explained in the next subsection.

3.3.2 Play-Out Step

The play-out step begins when we enter a position that is not part of the tree yet.
Moves are randomly selected until the game ends. This succeeding step is called
the play-out. In order to improve the quality of the play-outs, the moves are chosen
quasi-randomly based on heuristic knowledge (Bouzy, 2005; Gelly et al., 2006; Chen
and Zhang, 2008). For SameGame, several simulation strategies exist.

We have proposed two simulation strategies, called TabuRandom and TabuCol-
orRandom (Schadd et al., 2008c). Both strategies aim at creating large groups of one
color. In SameGame, creating large groups of blocks is advantageous. TabuRandom
chooses a random color at the start of a play-out. The idea is not to allow to play
this color during the play-out unless there are no other moves possible. With this
strategy large groups of the chosen color are formed automatically. The new aspect
in the TabuColorRandom strategy with respect to the previous strategy is that the
chosen color is the color most frequently occurring at the start of the play-out. This
may increase the probability of having large groups during the play-out. We also
use the ε-greedy policy to occasionally deviate from this strategy (Sutton and Barto,
1998). Before the simulation strategy is applied, with probability ε a random move
is played. Based on manual tuning, we chose ε = 0.003.

An alternative simulation strategy for SameGame is Monte-Carlo with Roulette-
Wheel Selection (MC-RWS) (Takes and Kosters, 2009). This strategy not only tries
to maximize one group of a certain color, but also tries to create bigger groups
of other colors. Tak (2010) showed that MC-RWS does not improve the score in
SP-MCTS because it is computationally more expensive than TabuColorRandom.



32 Single-Player Monte-Carlo Tree Search

3.3.3 Expansion Step

The expansion strategy decides on which nodes are stored in memory. Coulom
(2007a) proposed to expand one child per play-out. With his strategy, the expanded
node corresponds to the first encountered position that was not present in the tree.
This is also the strategy we used for SP-MCTS.

3.3.4 Backpropagation Step

During the backpropagation step, the result of the play-out at the leaf node is
propagated backwards to the root. Several backpropagation strategies have been
proposed in the literature (Chaslot et al., 2006b; Coulom, 2007a). The best results
that we have obtained for SP-MCTS was by using the plain average of the play-outs.
Therefore, we update (1) the average score of a node. Additional to this, we also
update (2) the sum of the squared results because of the third term in the selection
strategy (see Formula 3.1), and (3) the top score achieved so far.

3.3.5 Final Move Selection

The four steps are iterated until the time runs out.5 When this occurs, a final
move selection is used to determine which move should be played. In two-player
games (with an analogous run-out-of-time procedure) the best move according to
this strategy is played by the player to move. The opponent has then time to
calculate his response. But in puzzles this can be done differently. In puzzles it is
not required to wait for an unknown reply of an opponent. It is therefore possible to
perform one large search from the initial position and then play all moves at once.
With this approach all moves at the start are under consideration until the time for
SP-MCTS runs out. It has to be investigated whether this approach outperforms an
approach that allocates search time for every move. These experiments are presented
in Subsection 3.5.3.

3.3.6 Randomized Restarts

We observed that it is important to generate deep trees in SameGame (see Subsec-
tion 3.5.2). However, by exploiting the most-promising lines of play, the SP-MCTS
can be caught in local maxima. So, we randomly restart SP-MCTS with a differ-
ent seed to overcome this problem. Because no information is shared between the
searches, they explore different parts of the search space. This method resembles
root parallelization (Chaslot et al., 2008b).

Root parallelization is an effective way of using multiple cores simultaneously
(Chaslot et al., 2008b). However, we argue that root parallelization may also be
used for avoiding local maxima in a single-threaded environment. Because there is
no actual parallelization, we call this randomized restarts. Subsection 3.5.3 shows
that randomized restarts are able to increase the average score significantly.

5In general, there is no time limitation for puzzles. However, a time limit is necessary to make
testing possible.



3.4 — The Cross-Entropy Method 33

3.4 The Cross-Entropy Method

Choosing the correct SP-MCTS parameter values is important for its success. For
instance, an important parameter is the C constant which is responsible for the bal-
ance between exploration and exploitation. Optimizing these parameters manually
may be a hard and time-consuming task. Although it is possible to make educated
guesses for some parameters, for other parameters it is not possible. Specially hid-
den dependencies between the parameters complicate the tuning process. Here, a
learning method can be used to find the best values for these parameters (Sutton
and Barto, 1998; Beal and Smith, 2000).

The Cross-Entropy Method (CEM) (Rubinstein, 2003) has successfully tuned
parameters of an MCTS program in the past (Chaslot et al., 2008c). CEM is an
evolutionary optimization method, related to Estimation-of-Distribution Algorithms
(EDAs) (Mühlenbein, 1997). CEM is a population-based learning algorithm, where
members of the population are sampled from a parameterized probability distribu-
tion (e.g., Gaussian, Binomial, Bernoulli, etc.). This probability distribution repre-
sents the range of possible solutions.

CEM converges to a solution by iteratively changing the parameters of the prob-
ability distribution (e.g., µ and σ for a Gaussian distribution). An iteration consists
of three main steps. First, a set S of vectors x ∈ X is drawn from the probability
distribution, where X is some parameter space. These parameter vectors are called
samples. In the second step, each sample is evaluated and gets assigned a fitness
value. A fixed number of samples within S having the highest fitness are called the
elite samples. In the third step, the elite samples are used to update the parameters
of the probability distribution.

Generally, CEM aims to find the optimal solution x∗ for a learning task described
in the following form

x∗ ← argmax
x

f(x), (3.2)

where x∗ is a vector containing all parameters of the (approximately) optimal so-
lution. f is a fitness function that determines the performance of a sample x (for
SameGame this is the average number of points scored on a set of positions). The
main difference of CEM to traditional methods is that CEM does not maintain a
single candidate solution, but maintains a distribution of possible solutions.

There exist two methods for generating samples from the probability distribution,
(1) random guessing and (2) distribution focusing (Rubinstein, 2003). Random
guessing straightforwardly creates samples from the distribution and selects the
best sample as an estimate for the optimum. If the probability distribution peaked
close to the global optimum, random guessing may obtain a good estimate. If the
distribution is rather uniform, the random guessing is unreliable. After drawing a
moderate number of samples from a distribution, it may be impossible to give an
acceptable approximation of x∗, but it may be possible to obtain a better sampling
distribution. To modify the distribution to form a peak around the best samples
is called distribution focusing. Distribution focusing is the central idea of CEM
(Rubinstein, 2003).



34 Single-Player Monte-Carlo Tree Search

Table 3.1: Effectiveness of the simulation strategies.

Random TabuRandom TabuColorRandom

Average Score 2,069 2,737 3,038

StdDev 322 445 479

When starting CEM, an initial probability distribution is required. Chaslot et al.
(2008c) used a Gaussian distribution and proposed that for each parameter, the mean
µ of the corresponding distribution is equal to the average of the lower and upper
bound of that parameter. The standard deviation σ is set to half the difference
between the lower and upper bound (cf. Tak, 2010).

3.5 Experiments and Results

In this section we test SP-MCTS in SameGame. All experiments were performed on
an AMD64 2.4 GHz computer. Subsection 3.5.1 shows quality tests of the two sim-
ulation strategies TabuRandom and TabuColorRandom. Thereafter, the results of
manual parameter tuning are presented in Subsection 3.5.2. Subsequently, Subsec-
tion 3.5.3 gives the performance of the randomized restarts on a set of 250 positions.
In Subsection 3.5.4, it is investigated whether it is beneficial to exhaust all available
time at the first move. Next, in Subsection 3.5.5 the parameter tuning by CEM is
shown. Finally, Subsection 3.5.6 compares SP-MCTS to the other approaches.

3.5.1 Simulation Strategy

In order to test the effectiveness of the two simulation strategies, we used a test set
of 250 randomly generated positions.6 We applied SP-MCTS without randomized
restarts for each position until 10 million nodes were reached in memory. These runs
typically take 5 to 6 minutes per position. The best score found during the search is
the final score for the position. The constants C and D were set to 0.5 and 10,000,
respectively. The results are shown in Table 3.1.

Table 3.1 shows that the TabuRandom strategy has a significantly better average
score (i.e., 700 points) than plain random. Using the TabuColorRandom strategy
the average score is increased by another 300 points. We observe that a low stan-
dard deviation is achieved for the random strategy. In this case, it implies that all
positions score almost equally low. The proposed TabuColorRandom strategy has
also been successfully applied in Nested Monte-Carlo Search (Cazenave, 2009) and
HGSTS (Edelkamp et al., 2010).

3.5.2 Manual Parameter Tuning

This subsection presents the parameter tuning in SP-MCTS. Three different settings
were used for the pair of constants (C; D) of Formula 3.1, in order to investigate
which balance between exploitation and exploration gives the best results. These

6The test set can be found at http://www.personeel.unimaas.nl/maarten-schadd/TestSet.txt



3.5 — Experiments and Results 35

constants were tested with three different time controls on the test set of 250 po-
sitions, expressed by a maximum number of nodes. The short time control refers
to a run with a maximum of 105 nodes in memory. At the medium time control,
106 nodes are allowed in memory, and for a long time control 5 × 106 nodes are
allowed. We have chosen to use nodes in memory as measurement to keep the re-
sults hardware-independent. The parameter pair (0.1; 32) represents exploitation,
(1; 20,000) performs exploration, and (0.5; 10,000) is a balanced setting.

Table 3.2 shows the performance of the SP-MCTS approach for the three time
controls. The short time control corresponds to approximately 20 seconds per posi-
tion. The best results are achieved by exploitation. The score is 2,552. With this
setting the search is able to build trees that have on average the deepest leaf node
at ply 63, implying that a substantial part of the chosen line of play is inside the
SP-MCTS tree. Also, we observe that the other two settings are not generating a
deep tree.

For the medium time control, the best results were achieved by using the balanced
setting. It scores 2,858 points. Moreover, Table 3.2 shows that the average score of
the balanced setting increases most compared to the short time control, viz. 470.
The balanced setting is able to build substantially deeper trees than at the short
time control (37 vs. 19). An interesting observation can be made by comparing
the score of the exploration setting for the medium time control to the exploitation
score in the short time control. Even with 10 times the amount of time, exploration
is not able to achieve a significantly higher score than exploitation.

The results for the long experiment are that the balanced setting again achieves
the highest score with 3,008 points. The deepest node in this setting is on average
at ply 59. However, the exploitation setting only scores 200 points fewer than the
balanced setting and 100 points fewer than exploration.

Table 3.2: Results of SP-MCTS for different settings.

Exploitation Balanced Exploration
105 nodes (∼20 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,552 2,388 2,197
Standard Deviation 572 501 450

Average Depth 25 7 3
Average Deepest Node 63 19 8

106 nodes (∼200 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,674 2,858 2,579
Standard Deviation 607 560 492

Average Depth 36 14 6
Average Deepest Node 71 37 15

5 × 106 nodes (∼1,000 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,806 3,008 2,901
Standard Deviation 576 524 518

Average Depth 40 18 9
Average Deepest Node 69 59 20



36 Single-Player Monte-Carlo Tree Search

From the results presented we may draw two conclusions. First, it is important to
have a deep search tree. Second, exploiting local maxima can be more advantageous
than searching for the global maximum when the search only has a small amount of
time.

3.5.3 Randomized Restarts

This subsection presents the performance tests of the randomized restarts on the
set of 250 positions. We remark that the experiments are time constrained. Each
experiment could only use 5× 105 nodes in total and the restarts distributed these
nodes uniformly among the number of searches. It means that a single search can
take all 5× 105 nodes, but that two searches can only use 2.5× 105 nodes each. We
used the exploitation setting (0.1; 32) for this experiment. The results are depicted
in Figure 3.2.

Figure 3.2 indicates that already with two searches instead of one, a significant
performance increase of 140 points is achieved. Furthermore, the maximum average
score of the randomized restarts is at ten threads, which uses 5× 104 nodes for each
search. Here, the average score is 2,970 points. This result is almost as good as the
best score found in Table 3.2, but with the difference that the randomized restarts
together used one tenth of the number of nodes. After 10 restarts the performance
decreases because the generated trees are not deep enough.

3.5.4 Time Control

This subsection investigates whether it is better to exhaust all available time at
the initial position or to distribute the time uniformly for every move. Table 3.3
shows the average score on 250 random positions with five different time settings.

1 2 4 8 16 32 64 128
2550

2600

2650

2700

2750

2800

2850

2900

2950

3000

 Number of Runs

 A
ve

ra
g

e 
S

co
re

Figure 3.2: The average score for different settings of randomized restarts.



3.5 — Experiments and Results 37

When SP-MCTS is applied for every move, this time is divided by the average game
length (64.4). It means that depending on the number of moves, the total search
time varies. These time settings are exact in the case that SP-MCTS is applied per
game. This experiment was performed in collaboration with Tak (2010).

Table 3.3: Average score on 250 positions using different time control settings (Tak, 2010).

Time in seconds ∼5 ∼10 ∼20 ∼30 ∼60

SP-MCTS per game 2,223 2,342 2,493 2,555 2,750
SP-MCTS per move 2,588 2,644 2,742 2,822 2,880

Table 3.3 shows that distributing the time uniformly for every move is the better
approach. For every time setting a higher score is achieved when searching per move.
The difference in score is largest for 5 seconds, and smallest for 60 seconds. It is an
open question whether for longer time settings it may be beneficial to exhaust all
time at the initial position.

3.5.5 CEM Parameter Tuning

In the next series of experiments we tune SP-MCTS with CEM. The experiments
have been performed in collaboration with Tak (2010). The following settings for
CEM were used. The sample size is equal to 100, the number of elite samples is equal
to 10. Each sample plays 30 games with 1 minute thinking time for each game. The
30 initial positions are randomly generated at the start of each iteration. The fitness
of a sample is the average of the scores of these games. The five parameters tuned by
CEM are presented in Table 3.4. C, D, T and W were described in Subsection 3.3.1.
The ε parameter was described in Subsection 3.3.2. The CEM-tuned parameters
differ significantly from the manually tuned ones. For more results on tuning the
parameters, we refer to Tak (2010).

Table 3.4: Parameter tuning by CEM (Tak, 2010).

Parameter Manual CEM per game CEM per move

C 0.1 5.96 4.31
D 32 67.98 96.67
T 10 13 11
W 0.02 0.49 0.28
ε 0.003 0.00007 0.000077

To determine the performance of the parameters found by CEM an independent
test set of 250 randomly created positions was used. Five different time settings
were investigated. Table 3.5 shows the results of the CEM experiments. Here, the
search time is distributed uniformly for every move.

7This parameter was not tuned again because it was obvious that the optimal weight is close to
or equal to zero.



38 Single-Player Monte-Carlo Tree Search

Table 3.5: Average scores of CEM tuning (Tak, 2010).

Time in seconds ∼5 ∼10 ∼20 ∼30 ∼60

Manual tuned 2,588 2,644 2,742 2,822 2,880
Average Depth 22.7 27.4 30.3 32.8 35.9

Average Deepest Node 31.8 36.8 39.1 41.4 44.3

CEM tuned 2,652 2,749 2,856 2,876 2,913
Average Depth 4.9 5.4 6.2 6.8 9.1

Average Deepest Node 9.0 10.2 12.2 13.5 19.2

Table 3.5 shows that for every time setting CEM is able to improve the score. This
demonstrates the difficulty of finding parameters manually in a high-dimensional pa-
rameter space. The CEM-tuned parameters are more explorative than the manually
tuned parameters. This difference may be due to the fact that the CEM parameters
are tuned for the “per move” time control setting. The average depth and aver-
age deepest node achieved by the CEM parameters are closest to the results of the
balanced setting in Table 3.2.

3.5.6 Comparison on the Standardized Test Set

Using two hours per position, we tested SP-MCTS on the standardized test set. We
tested three different versions of SP-MCTS, subsequently called SP-MCTS(1), SP-
MCTS(2), and SP-MCTS(3). SP-MCTS(1) builds one large tree at the start and uses
the exploitation setting (0.1; 32) and randomized restarts, which applied 1,000 runs
using 100,000 nodes for each search thread. SP-MCTS(2) uses the same parameters
as SP-MCTS(1), but distributes its time per move. SP-MCTS(3) distributes its time
per move and uses the parameters found by CEM. Table 3.6 compares SP-MCTS
with other approaches, which were described in Subsection 3.1.3.

SP-MCTS(1) outperformed DBS on 11 of the 20 positions and was able to achieve
a total score of 73,998. This was the highest score on the test set at the point of
our publication (cf. Schadd et al., 2008c). SP-MCTS(2) scored 76,352 points, 2,354
more than SP-MCTS(1). This shows that it is important to distribute search time
for every move. SP-MCTS(3) achieved 78,012 points, the third strongest method
at this point of time. All SP-MCTS versions are able to clear the board for all 20
positions.8 This confirms that a deep search tree is important for SameGame as
shown in Subsection 3.5.2.

The two highest scoring programs (1) spurious ai and (2) HGSTS achieved more
points than SP-MCTS. We want to give the following remarks on these impressive
scores. (1) spurious ai is memory intensive and it is unknown what time settings
were used for achieving this score. (2) HGSTS utilized the graphics processing unit
(GPU), was optimized for every position in the standardized test set, and applied our
TabuColorRandom strategy. Moreover, the scores of HGTS were not independently
verified to be correct.

8The best variations can be found at the following address:
http://www.personeel.unimaas.nl/maarten-schadd/SameGame/Solutions.html



3.5 — Experiments and Results 39

Table 3.6: Comparing the scores on the standardized test set.

Position no. DBS SP-MCTS(1) SP-MCTS(2) MC-RWS

1 2,061 2,557 2,969 2,633
2 3,513 3,749 3,777 3,755
3 3,151 3,085 3,425 3,167
4 3,653 3,641 3,651 3,795
5 3,093 3,653 3,867 3,943
6 4,101 3,971 4,115 4,179
7 2,507 2,797 2,957 2,971
8 3,819 3,715 3,805 3,935
9 4,649 4,603 4,735 4,707

10 3,199 3,213 3,255 3,239
11 2,911 3,047 3,013 3,327
12 2,979 3,131 3,239 3,281
13 3,209 3,097 3,159 3,379
14 2,685 2,859 2,923 2,697
15 3,259 3,183 3,295 3,399
16 4,765 4,879 4,913 4,935
17 4,447 4,609 4,687 4,737
18 5,099 4,853 4,883 5,133
19 4,865 4,503 4,685 4,903
20 4,851 4,853 4,999 4,649

Total: 72,816 73,998 76,352 76,764

Position no. Nested MC SP-MCTS(3) spurious ai HGSTS

1 3,121 2,919 3,269 2,561
2 3,813 3,797 3,969 4,995
3 3,085 3,243 3,623 2,858
4 3,697 3,687 3,847 4,051
5 4,055 4,067 4,337 4,633
6 4,459 4,269 4,721 5,003
7 2,949 2,949 3,185 2,717
8 3,999 4,043 4,443 4,622
9 4,695 4,769 4,977 6,086

10 3,223 3,245 3,811 3,628
11 3,147 3,259 3,487 2,796
12 3,201 3,245 3,851 3,710
13 3,197 3,211 3,437 3,271
14 2,799 2,937 3,211 2,432
15 3,677 3,343 3,933 3,877
16 4,979 5,117 5,481 6,074
17 4,919 4,959 5,003 5,166
18 5,201 5,151 5,463 6,044
19 4,883 4,803 5,319 5,019
20 4,835 4,999 5,047 5,175

Total: 77,934 78,012 84,414 84,718



40 Single-Player Monte-Carlo Tree Search

3.6 Chapter Conclusions and Future Research

In this chapter we proposed a new MCTS variant called Single-Player Monte-Carlo
Tree Search (SP-MCTS). We adapted MCTS by two modifications resulting in SP-
MCTS. The modifications are (1) in the selection strategy and (2) in the backprop-
agation strategy. Below we provide five observations and one conclusion.

First, we observed that our TabuColorRandom strategy significantly increased
the score of SP-MCTS in SameGame. Compared to the pure random play-outs, an
increase of 50% in the average score is achieved. The proposed TabuColorRandom
strategy has also been successfully applied in Nested Monte-Carlo Search (Cazenave,
2009) and HGSTS (Edelkamp et al., 2010). Second, we observed that exploiting
works better than exploring at short time controls. At longer time controls a bal-
anced setting achieves the highest score, and the exploration setting works better
than the exploitation setting. However, exploiting the local maxima still leads to
comparable high scores. Third, with respect to the randomized restarts, we observed
that for SameGame combining a large number of small searches can be more bene-
ficial than performing one large search. Fourth, it is better to distribute search time
equally over the consecutive positions than to invest all search time at the initial
position. Fifth, CEM is able to find better parameter values than manually tuned
parameter values. The parameters found by CEM resemble a balanced setting. They
were tuned for applying SP-MCTS for every move, causing that deep trees are less
important.

The main conclusion is that we have shown that MCTS is applicable to a one-
player deterministic perfect-information game. Our variant, SP-MCTS, is able to
achieve good results in SameGame. Thus, SP-MCTS is a worthy alternative for
puzzles where a good admissible estimator cannot be found.

There are two directions of future research for SP-MCTS. The first direction is
to test several enhancements in SP-MCTS. We mention two of them. (1) The selec-
tion strategy can be enhanced with RAVE (Gelly and Silver, 2007) or progressive
widening (Chaslot et al., 2008d; Coulom, 2007a). (2) This chapter demonstrated
that combining small searches can achieve better scores than one large search. How-
ever, there is no information shared between the searches. This can be achieved by
using a transposition table, which is not cleared at the end of a small search. The
second direction is to apply SP-MCTS to other domains. For instance, we could test
SP-MCTS in puzzles such as Morpion Solitaire and Sudoku (Cazenave, 2009) and
Single-Player General Game Playing (Méhat and Cazenave, 2010). Other classes of
one-player games, with non-determinism or imperfect information, could be used as
test domain for SP-MCTS as well.




